MTH 406: Differential geometry of curves and surfaces

Homework VII: Second fundamental form and Minimal surfaces

Problems for practice

1. Establish all the assertions in 3.3 (ii) - (iv), 3.4 (ix).
2. Compute the first and second fundamental forms, the mean and the Gaussian curvature for the following surfaces.
(a) The monkey saddle given by

$$
S=\left\{\left(u, v, u^{3}-3 v^{2} u\right): u, v \in \mathbb{R}^{2}\right\} .
$$

(b) The Möbius strip M in 2.4 (vii) of the Lesson Plan.
(c) The Enneper's surface given by

$$
S=\left\{\left(u-\frac{u^{3}}{3}+u v^{2}, v-\frac{v^{3}}{3}+v u^{2}, u^{2}-v^{2}\right): u, v \in \mathbb{R}^{2}\right\} .
$$

(d) The pseudosphere obtained by revolving the tractrix given by

$$
\gamma(t)=(\sin (t), 0, \cos (t)+\ln (\tan (t / 2))), t \in(\pi / 2, \pi)
$$

about the z-axis.
(e) The catenoid and the helicoid given in 3.4 (ix) of the Lesson Plan.
3. Classify the surfaces of revolution with constant Gaussian curvature zero and -1 .
4. Prove that the mean curvature at a point p of an oriented regular surface S equals the average value of the normal curvature at p over the circle of unit-length directions in $T_{p}(S)$.
5. Show that every compact regular surface has a point of positive Gaussian curvature.
6. Show that any minimal surface satisfies $K \leq 0$. Conclude that a minimal surface is not compact.
7. Show that if a connected minimal surface has constant Gaussian curvature zero, then it the subset of a plane.
8. Show that the following surfaces are minimal.
(a) The Scherk's surface $f(x, y)=\frac{\cos (y)}{\cos (x)}$ whose domain is chosen appropriately.
(b) The Catalan's surface given by the parametrization

$$
f(u, v)=(u-\sin (u) \cosh (v), 1-\cos (u) \cosh (v),-4 \sin (u / 2) \sinh (v / 2)) .
$$

